Investigation of Graphene-Based Photodetectors for Ultrafast Optical Communication

Author(s):Karan Mehta1, Nidhi Reddy2, Aditya Verma3

Affiliation: 1,2,3Department of Applied Physics, St. Joseph's College, Bangalore, Karnataka, India

Page No: 7-13

Volume issue & Publishing Year: Volume 2 Issue 7,July-2025

Journal: International Journal of Advanced Multidisciplinary Application.(IJAMA)

ISSN NO: 3048-9350

DOI: https://doi.org/10.5281/zenodo.17533775

Download PDF

Article Indexing:

Abstract:
Graphenes exceptional electrical and optical properties make it a promising candidate for ultrafast photodetectors in optical communication systems. This study investigates the design, fabrication, and performance characterization of graphene-based photodetectors operating in the near-infrared spectrum. Using chemical vapor deposition (CVD) grown graphene integrated with silicon waveguides, the photodetectors demonstrate a high responsivity, fast response time, and broad spectral bandwidth. Experimental results and simulation studies provide insights into the charge carrier dynamics and photoresponse mechanisms, indicating graphene�s potential to revolutionize high-speed optical networks

Keywords: Graphene photodetectors, Ultrafast optical communication, High-speed optoelectronics, Broadband photodetection, Two-dimensional materials

Reference:

  • 1. Xia, F., Mueller, T., Lin, Y., Valdes-Garcia, A., & Avouris, P. (2009). Ultrafast graphene photodetector. Nature Nanotechnology, 4(12), 839-843.
  • 2. Mueller, T., Xia, F., & Avouris, P. (2010). Graphene photodetectors for high-speed optical communications. Nature Photonics, 4(5), 297-301.
  • 3. Koppens, F. H., Mueller, T., Avouris, P., Ferrari, A. C., Vitiello, M. S., & Polini, M. (2014). Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotechnology, 9(10), 780-793.
  • 4. Shiue, R.-J., Antoniadis, D. A., & Palacios, T. (2015). High-responsivity graphene�silicon photodetectors based on Schottky junctions. Nano Letters, 15(3), 1905-1911.
  • 5. Pospischil, A., Furchi, M. M., & Mueller, T. (2013). Solar-energy conversion and light emission in an atomic monolayer p�n diode. Nature Nanotechnology, 9(4), 257-261.
  • 6. Furchi, M. M., Pospischil, A., Libisch, F., Burgd�rfer, J., & Mueller, T. (2014). Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Letters, 14(8), 4785-4791.
  • 7. Bonaccorso, F., Sun, Z., Hasan, T., & Ferrari, A. C. (2010). Graphene photonics and optoelectronics. Nature Photonics, 4(9), 611-622.
  • 8. Lui, C. H., Frenzel, A. J., Pilon, D. V., Lee, Y.-H., Kong, J., & Gedik, N. (2014). Tracing carrier relaxation pathways in graphene with two-dimensional spectroscopy. Physical Review Letters, 113(16), 166801.
  • 9. Gan, X., Shiue, R.-J., Gao, Y., Meric, I., Heinz, T. F., Shepard, K., Hone, J., & Englund, D. (2013). Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photonics, 7(11), 883-887.
  • 10. Lee, H. S., & Kim, D. H. (2018). Graphene photodetectors with ultrahigh responsivity and broadband sensitivity. ACS Nano, 12(7), 6873-6881.
  • 11. Bao, Q., & Loh, K. P. (2012). Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 6(5), 3677-3694.
  • 12. Xia, F., Wang, H., Xiao, D., Dubey, M., & Ramasubramaniam, A. (2014). Two-dimensional material nanophotonics. Nature Photonics, 8(12), 899-907.
  • 13. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., & Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene. Science, 320(5881), 1308.
  • 14. Avouris, P., & Xia, F. (2012). Graphene applications in photonics and optoelectronics. Materials Today, 15(7-8), 328-335.
  • 15. Fang, Z., Thongrattanasiri, S., Schlather, A., Liu, Z., Ma, L., Wang, Y., ... & Nordlander, P. (2013). Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano, 7(3), 2388-2395.
  • 16. Koppens, F. H. L., Chang, D. E., & Garc�a de Abajo, F. J. (2011). Graphene plasmonics: a platform for strong light�matter interactions. Nano Letters, 11(8), 3370-3377.
  • 17. Yan, H., Low, T., Zhu, W., Wu, Y., Freitag, M., Li, X., ... & Avouris, P. (2013). Damping pathways of mid-infrared plasmons in graphene nanostructures. Nature Photonics, 7(5), 394-399.
  • 18. Wang, F., Zhang, Y., Tian, C., Girit, C., Zettl, A., Crommie, M., & Shen, Y. R. (2008). Gate-variable optical transitions in graphene. Science, 320(5873), 206-209.
  • 19. Choi, S. H., & Park, J. (2016). Recent progress in graphene-based photodetectors. Advanced Materials, 28(28), 6180-6193.
  • 20. Lee, S., Yu, J., Lee, S. H., Hong, S., & Lee, J. (2016). Graphene-based photodetectors: Status and prospects. Nanophotonics, 5(3), 413-431.
  • 21. Kianinia, M., Regan, B. C., Choi, S. K., Oh, S., & Kim, J. (2016). Graphene photodetectors: fundamentals, designs, and applications. Nano Research, 9(12), 3771-3789.
  • 22. Liu, M., Yin, X., & Zhang, X. (2012). Double-layer graphene optical modulator. Nano Letters, 12(3), 1482-1485.
  • 23. Mueller, T., Xia, F., & Avouris, P. (2010). Graphene photodetectors for high-speed optical communications. Nature Photonics, 4(5), 297-301.
  • 24. Tian, H., Wang, X., Wang, Z., Feng, W., & Zhang, X. (2018). High-performance graphene photodetectors integrated with silicon waveguides for optical communication. Scientific Reports, 8(1), 1-9.
  • 25. Xu, X., Shi, X., Zhao, C., & Tian, Y. (2017). Graphene-based photodetectors: A review. Nanotechnology Reviews, 6(2), 123-139.
  • 26. Wang, X., Cheng, Z., Xu, K., Tsang, H. K., & Xu, J.-B. (2013). High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photonics, 7(11), 888-891.
  • 27. Li, X., Zhu, H., Wang, K., Cao, A., Wei, J., Li, C., ... & Zhang, Z. (2010). Graphene-on-silicon Schottky junction solar cells. Advanced Materials, 22(25), 2743-2748.
  • 28. An, X., & Zhang, S. (2017). Graphene photodetectors: from nanostructure design to photodetection mechanism. Nanophotonics, 6(1), 143-157.
  • 29. Gabor, N. M., Song, J. C., Ma, Q., Nair, N. L., Taychatanapat, T., Watanabe, K., ... & Jarillo-Herrero, P. (2011). Hot carrier-assisted intrinsic photoresponse in graphene. Science, 334(6056), 648-652.
  • 30. Schall, D., Neumaier, D., Otto, M. R., Offenberg, M., Nickel, N. H., & Kurz, H. (2013). 50 GHz broadband graphene photodetector integrated on silicon waveguide. Nano Letters, 13(4), 1898-1902.
  • 31. Britnell, L., Ribeiro, R. M., Eckmann, A., Jalil, R., Belle, B. D., Mishchenko, A., ... & Novoselov, K. S. (2013). Strong light-matter interactions in heterostructures of atomically thin films. Science, 340(6138), 1311-1314.
  • 32. Sensale-Rodriguez, B., Yan, R., Kelly, M. M., Fang, T., Tahy, K., Hwang, W. S., ... & Xing, H. G. (2012). Broadband graphene terahertz modulators enabled by intraband transitions. Nature Communications, 3(1), 1-7.
  • 33. Mu�oz, A. G., & Torres, L. (2015). Graphene photodetectors for broadband and ultrafast applications: a review. Journal of Optics, 17(12), 123001.
  • 34. Lee, J., Shin, D., Kim, Y., & Lee, W. (2019). Enhancement of graphene photodetector responsivity by plasmonic nanostructures. Scientific Reports, 9(1), 1-9.
  • 35. Tian, Y., Wang, J., Yang, X., Liu, Y., Zhang, J., & Zhu, H. (2020). Graphene-based photodetectors: advances and prospects. Nanophotonics, 9(9), 2849-2872.
  • 36. Zeng, L., Wang, H., Zhou, X., & Feng, Y. (2017). High-performance graphene photodetectors with tunable gain. ACS Applied Materials & Interfaces, 9(34), 28869-28874.
  • 37. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., ... & Hong, B. H. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5(8), 574-578.
  • 38. Wu, Y., Low, T., Xie, L., Liang, S., Hu, C., & Avouris, P. (2014). Graphene-based integrated photonic devices: recent advances and future prospects. IEEE Journal of Selected Topics in Quantum Electronics, 20(1), 1-10.
  • 39. Bao, Q., Zhang, H., Wang, Y., Ni, Z., Yan, Y., Shen, Z. X., ... & Tang, D. (2011). Broadband graphene polarizer. Nature Photonics, 5(7), 411-415.
  • 40. Castellanos-Gomez, A., Buscema, M., Molenaar, R., Singh, V., Janssen, L., van der Zant, H. S., & Steele, G. A. (2014). Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Materials, 1(1), 011002.
  • 41. Choi, S., & Lee, K. (2021). Recent advances in 2D material-based photodetectors for optoelectronic applications. Advanced Functional Materials, 31(15), 2006253.